

Mech

ANNUAL REPORT 2011

UIUC, August 18, 2011

Thermal Stress Cracking of Sliding Gate Plates

Hyoung-Jun Lee, Seong-Mook Cho, Seon-Hyo Kim

Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea

Brian G. Thomas

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W.Green St., Urbana, IL, USA, 61801

Sang-Woo Han, Tae-In Jung, Joo Choi

POSCO Technical Research Laboratories, POSCO, Pohang, Kyungbuk 790-785, South Korea

Materials Science and Engineering

Pohang University of Science and Technology

Objectives

- Evaluate possible mechanisms for crack formation
- Explore thermal and mechanical stress in a sliding gate plate during preheating and casting induced by thermal expansion and/or mechanical movement
- Predict crack formation

2

Ĩ

1

Hyoung-Jun Lee

Sliding gate is heated from room temperature to pre-determined temperature

LNG (Liquefied Natural Gas) composition [1]

- Methane(CH4): 88%
- Ethane(C2H6): 5%
- Propane(C3H8):5%
- Butane(C4H6): 2%
- Singh VBA model [2] is used
- Flame Temperature: 1518.3 ° C

Internal gas temp. is lower than flame temp. \rightarrow 750 ° C is assumed

Properties for Ladle Plate Model Validation Problem

		Symbol	Value	Units
	Initial Nozzle Temperature	T _{initial}	25	°C
Preheating	Internal Gas Temperature	T _{i,preheat}	750	°C
	Internal Convection Heat Transfer Coefficient (Forced)	h _{i,preheat}	65.24	W/m²⋅K
	External Ambient Temperature	T _{o,preheat}	25	°C
	External Convection Heat Transfer Coefficient (Free)	h _{o,preheat}	7	W/m²⋅K
Casting	Molten Steel Temperature	T _{i,steel}	1590	°C
	Internal Convection Heat Transfer Coefficient (Forced)	h _{i,steel}	28719.63	W/m²⋅K
	External Ambient Temperature	T _{o,steel}	150	°C
	External Convection Heat Transfer Coefficient (Free)	h _{o,steel}	7	W/m²⋅K
	Density [6]	ρ	3200	kg/m³
	Thermal Conductivity [6]	k	8.26	W/m·K
	Specific Heat [6]	Cp	1004.64	J/kg⋅°C
	Stefan-Boltzmann Const.	σ	5.669 x 10 ⁻⁸	W/m²⋅K⁴
	Emissivity [7]	ε	0.92	-

asting

Model Validation Summary

- Preheating is calculated until #1 T/C is reached to 150°C for 50 min.
- During 40 min. casting, experimental and predicted results are well-matched in heat transfer model of ladle plate
- Assumed internal gas temperature (750°C) is reasonable to be applied to tundish sliding gate nozzle model for preheating stage
- The heat transfer coefficients are used to tundish sliding gate nozzle model

nuous

Properties for Tundish Sliding Gate Heat Transfer Model

			Symbol	Value	Units
	Initial	Nozzle Temperature	T _{initial}	25	°C
Preheating	Internal Gas Temperature (Preheating)		T _{i,preheat}	750	°C
	Internal Convection Heat Transfer Coefficient (Forced)		h _{i,preheat}	65.24	W/m²⋅K
	External Ambient Temperature (Preheating)		T _{o,preheat}	25	°C
	External Convection Heat Transfer Coefficient (Free)		h _{o,preheat}	7	W/m²⋅K
Casting	Molten Steel Temperature		T _{i,steel}	1550	°C
	Internal Convection Heat Transfer Coefficient (Forced)		h _{i,steel}	28719.63	W/m²⋅K
	External Ambient Temperature		T _{o,steel}	150	°C
	External Convection Heat Transfer Coefficient (Free)		h _{o,steel}	7	W/m²⋅K
	Refractory [6]	Density	ρ _{ref}	3200	kg/m³
		Thermal Conductivity	k _{ref}	8.26	W/m⋅K
		Specific Heat	C _{p,ref}	1004.64	J/kg⋅°C
	Steel [6]	Density	ρ _{steel}	7860	kg/m³
		Thermal Conductivity	k _{steel}	48.6	W/m-K
		Specific Heat	C _{p,steel}	418.6	J/kg⋅°C
	Stefan-Boltzmann Const.		σ	5.669 x 10 ⁻⁸	W/m²⋅K⁴
	Emissivity [7]		٤ _{ref}	0.92	-
Pohang Univ	ersity of Science and '	Technology Materials S	cience and Estanleering	0.75	- 19

- During preheating step, tensile and compressive stresses exceed tensile and compressive strength
 - → Crack location matches prediction
- If cracks are already formed in preheating step, different stress and temperature distributions will result

nuous

Future Work

- Creep and residual stress behavior is needed to better investigate cracks in sliding gate
- Thermal-stress simulation should extend after preheating
- Cassette design is needed for exact deformation and pressure to plates
- UTN and SEN design is needed for knowing contact region

Materials Science and Engineering

References

Pohang University of Science and Technology

 Korea Gas Safety Corporation
Varun Kumar Singh, B.G. Thomas, CCC Annual report 2010, UIUC, August 12, 2010
Incropera, F.P., and Dewitte, P.D., 2002, *Fundamentals of Heat and Mass Transfer*, John Wiley and Sons, New York
"New Generation Ladle Slide Gate System for Performance Improvement", J. Chaudhuri, 2007
"Thermal Loading of Periclase Plates in Sliding Gates of Steel-teeming Ladles", K. V. Simonov, 1980
Chosun Refractories Co. Ltd. Research Center

[7] Monarch Instrument, "Table of Total Emissivity"

30

1

29

Hyoung-Jun Lee

- Continuous Casting Consortium Members (ABB, Arcelor-Mittal, Baosteel, Tata Steel, Magnesita Refractories, Nucor Steel, Nippon Steel, Postech, POSCO, SSAB, ANSYS-Fluent)
- National Center for Supercomputing Applications (NCSA) at UIUC – "Tungsten" cluster
- POSCO Sung-Kwang Kim, Kwon-Myung Lee
- UIUC Lance C. Hibbeler

Pohang University of Sci	ence and Technology	Materials Science and Engineering	Hyoung-Jun Lee	31	1